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ABSTRACT

How does the formulation of a target variable affect performance within the ML pipeline? The
experiments in this study examine numeric targets that have been binarized by comparing against
a threshold. We compare the predictive performance of regression models trained to predict the
numeric targets vs. classifiers trained to predict their binarized counterparts. Specifically, we make
this comparison at every point of a randomized hyperparameter optimization search to understand
the effect of computational resource budget on the tradeoff between the two. We find that regression
requires significantly more computational effort to converge upon the optimal performance, and
is more sensitive to both randomness and heuristic choices in the training process. Although
classification can and does benefit from systematic hyperparameter tuning and model selection, the
improvements are much less than for regression. This work comprises the first systematic comparison
of regression and classification within the framework of computational resource requirements. Our
findings contribute to calls for greater replicability and efficiency within the ML pipeline for the sake
of building more sustainable and robust AI systems.

Keywords Machine Learning · Target Variables · Hyperparameter Optimization

1 Introduction

Target variables for machine learning applications should be formulated to support a specific decision, and in research
contexts are usually treated as a fixed part of the ML pipeline. However, even given a specific task, there can be
flexibility in the formulation of the target variable. Specifically, there are many applications where either numeric or
categorical predictions could be equally suitable. To use a classic example, if a company wants to address customers
who are likely to “churn", i.e. suspend their services in the near future, they could train regression models to predict each
customer’s numeric future usage of their service. Alternatively, the company could binarize the target variable based
on whether usage is above or below some threshold. Then, they would train binary classifiers to predict the resulting
categorical target. Beyond the obvious differences between the two formulations, such as choosing the appropriate
evaluation metric, the choice between these two potential target variable formulations is not usually discussed in the
extant ML literature.

This work studies the fundamental but previously unanswered research question of how regression vs. classification
models differ, in terms of both resource requirements within the ML pipeline and replicability of results. In applications
where either formulation could be used interchangeably, the choice is usually approached heuristically. To systematize
this choice, we conduct an experimental comparison of various parts of the ML pipeline given a numeric target versus
the categorical target variable that results from binarizing using a threshold. Thus, the predictive problems compared
are identical, save for the formulation of the target variable.
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A key component of the experiments is that we compare the performance for the two task types as a function of
Hyperparameter Optimization (HPO) random search budgets. Across feature sets, target variables, and model families,
we consistently find that regression tasks require significantly more computation to converge on optimal parameters
than their classification counterparts. Digging into these results reveals that regression is more sensitive not only to
HPO budget, but to all of the heuristic choices across the ML pipeline that we investigate. HPO budget, model selection,
choice of grid search algorithm, and amount of training data all yield significantly more variation in terms of test
performance than they do for classifiers. The performance of regression models are also more sensitive to randomness
and therefore prone to overfitting.

Thus, in applications where either formulation could be appropriate, choosing classification enables use of smaller HPO
budgets and yields more straightforward generalization of results. In general, modelers planning regressions should
ensure a large budget for HPO and use repeated sampling to ensure generalizability. Modelers conducting classification
don’t need to use such large grids as are used for regression, and can also use smaller amounts of training data to reach
nearly optimal results. Given the substantial carbon emissions associated with HPO, recent work has pointed out that
prioritizing computationally efficient algorithms can lead to significant reductions in environmental impact [Strubell
et al., 2019, Schwartz et al., 2020]. Our findings thus contribute to research in sustainable AI not by developing more
efficient algorithms, but by streamlining other parts of the ML pipeline. Our findings also contribute to advances in
automated machine learning (AutoML) by systematizing some heuristic choices. Finally, we also contribute to work
dealing with the crisis of replicability in science broadly, and ML more specifically [Bouthillier et al., 2021]. Simply put,
classification results are easier to replicate. They are less susceptible to overfitting, less sensitive to both randomness
and heuristic choices. Although the state-of-the-art is relatively better (on average) for regression, making decisions
systematically and reporting all parameters is of more critical importance for this task.

2 Related Work

Practical guides for applied machine learning emphasize the importance of formulating the target variable to align
with some decision that is being supported [Provost and Fawcett, 2013]. For instance, CRISP-DM, a widely-used
business framework for applying machine learning, includes formulating the target variable as part of the “business
understanding" phase [Chapman et al., 2000]. It has been acknowledged that tasks related to the business understanding
phase are not widely studied in the literature [Baier et al., 2019], and most research in ML (both applied and theoretical)
assumes that the target variable is a fixed concept.

There are a few common practices relating to modifying the target variable to make prediction problems easier. For
example, if the distribution of numeric values has a heavy right tail, it can be log-transformed. If a binary-valued target
variable has a strong class imbalance, oversampling or undersampling can be used to improve predictive performance.
Target variables can be specially formulated for particular applications, such as causal effect estimation [Fernández-Loría
and Provost, 2022]. The field of prompt engineering includes constructing tasks to elicit the best-possible classifications
or predictions from large language models such as ChatGPT (i.e. Sorensen et al. [2022], Brown et al. [2020], Liu et al.
[2021], Zhou et al. [2022]).

There are many examples of past work which have implicitly compared classification and regression for a particular
task by providing reasons for binarizing numerical target variables. First, it may be easier to acquire binary, rather than
numerical, labels, especially when the labels are user-generated [Sparling and Sen, 2011]. Second, although what is
being measured directly may be numeric, typical use of that variable involves a categorical decision [Liu et al., 2020].
Binarization may result in a simpler problem [Zhang and Moe, 2021] or yield desirable evaluation metrics such as a
confusion matrix [Abbasi et al., 2019]. Recent work has also studied how and why reformulating a regression problem
as classification can result in improved performance of neural networks [Stewart et al., 2023], which they term “the
binning phenomenon."

The question of whether it’s ever appropriate to binarize a numeric dependent variable has also been debated in the
traditional statistics literature, and is generally viewed as a bad practice [Royston et al., 2006, Fitzsimons, 2008].
Binarizing has been found to lead to misleading results in the size and direction of coefficients in regression analysis
[Maxwell and Delaney, 1993]. Although binarizing the response variable makes results easier to explain and present to
non-practitioners, it can also lead to a loss of information and statistical power [Irwin and McClelland, 2003]. The field
has continued to discuss the role of dichotomization in statistics [Pham, 2015]. The results in this work do not directly
contradict past findings; however, we find that there are positive benefits to binarizing in predictive contexts.
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3 EXPERIMENTS

The core experiments in this paper seek to compare the process and performance models trained to predict numerical
target variables (regression task) versus binary categorical target variables (classification task). The experimental
framework relies on the idea that we can compute a binarized counterpart to any numeric target variable by comparing
to a threshold. Thus, all of the other parameters of the experiment are kept as similar as possible such that the only
difference is the two target variable data types.

3.1 Grid Search

Following the notation developed by Dodge et al. [2019], we denote M to indicate the model family, meaning a
general induction algorithm with a set of k hyperparmeters that can be optimized. Each k-tuple of values of individual
hyperparameters forms one hyperparameter value h, and the set of all possible hyperparameter values forms HM. In
our experiments, we choose model families that can be adapted to predict either numeric or categorical target variables,
and thus HM is the same for both task types.

The grid searches completed in this paper conduct B random draws from HM, and are randomly initialized S times.
Let A (M, h, s,DT ,DP ) denote an algorithm that returns the performance in some prediction data DP using a model
from M with hyperparameter value h trained on DT , given random initialization state s ∈ {1, · · · , S}. For draw b
from HM, define the validation and test performance for draw b as:

vb = A (M, hb, s,DT ,DV ) (1)
tb = A (M, hb, s,DT ,DTE) (2)

We report the cumulative maximum validation performance after B grid search iterations v∗B , the best hyperparameter
value h∗

B and test performance using those best hyperparameters t∗B :

v∗B = max
h∈{h1,...,hB}

A (M, h, s,DT ,DV ) (3)

h∗
B = argmax

h∈{h1,...,hB}
A (M, h, s,DT ,DV ) (4)

t∗B = A (M, h∗
B , s,DT ,DTE) (5)

For the experiments in this paper, we set B = 400 and S = 15. The first draw for each search always comprises the
default hyperparameters for M, yielding a reasonable estimate of off-the-shelf performance. HM (including the default
parameters) is specific to each M and were drawn from Hyperopt-Sklearn [Komer et al., 2014] and have been used in
past work on HPO [Grinsztajn et al., 2022, Gorishniy et al., 2021].

We experiment with both a standard random search [Bergstra and Bengio, 2012] as well as the Tree-Structured Parzen
Estimator algorithm, a Bayesian optimization algorithm [Turner et al., 2021]. We use the Optuna library in Python for
managing this grid search [Akiba et al., 2019].

3.2 Datasets

The data testbed uses three feature sets gathered from publicly-available online data: Airbnb.com2, Kickstarter.com 3,
and Yelp.com 4. We engineered a tabular feature set of size approximately 2000 from each.5

We derived 10 numeric target variables from each domain, which were standardized using z-score normalization such
that each one has mean 0 and standard deviation 1. We further created a binarized counterpart to each numeric target
by thresholding at the mean value. That is, the binarized target is positive if the numeric target is greater than 0, and
negative otherwise. Table 1 contains detailed descriptions of the datasets and target variables.

2http://insideairbnb.com/get-the-data/, accessed March 2018
3https://webrobots.io/kickstarter-datasets/, accessed Dec 2015
4https://www.yelp.com/dataset, accessed Jan 2022
5Note that other tabular benchmarking datasets [Grinsztajn et al., 2022] mostly have considerably fewer features; having larger

feature sets allows us to experiment with feature set size.
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Domain Feature Set Description Numeric Target Variables
Airbnb Information and descriptions of list-

ings from Airbnb.com.
(1) Number of guests accommodated (2) Availability in the next
30 days (3) Availability in the next 60 days (4) Availability in the
next 90 days (5) Availability in the next 365 days (6) Host listings
count (7) Number of reviews (8) Price (9) Average rating (10)
Average reviews per month

Kickstarter Information and descriptions of
completed crowdfunding cam-
paigns from Kickstarter.com.

(1) Dollars pledged (2) Number of backers (3) Dollar goal amount
(4) Number of reward levels for contributors (5) Minimum amount
to receive an award (6) Maximum amount to receive an award
(7) Standard deviation of reward amounts (8) Time between cam-
paign creation and campaign launch (9) Number of sentences in
description (10) Average length of sentences in description

Yelp Information about business which
have received reviews on Yelp.com.

(1) Total number of reviews (2) Average star rating (3) Average
"useful" review rating (4) Average "funny" review rating (5) Aver-
age "cool" review rating (6) Average review count of reviewers
(7) Percent of reviewers with "elite" status (8) Percent of male
reviewers (9) Number of checkins (10) Number of tips

Table 1: Description of feature sets and numeric target variables.

For consistency of comparison, each feature set contains 30, 000 instances, yielding “medium"-sized data.6 Most results
in the paper, other than those presented in Section 4.2, divide each feature set into three:

1. DT : 10, 000 training instances.

2. DV : 5, 000 validation instances, used for tuning hyperparameters.

3. DTE : 15, 000 test instances, used for evaluation.

3.3 Model Families

The experiments in this paper use three families of induction algorithms that can be suitable for either the regression
or classification task. First, ensemble methods such as XGBoost [Chen et al., 2015] are currently regarded as the
state-of-the-art ML model for tabular data [Grinsztajn et al., 2022, Borisov et al., 2022, Shwartz-Ziv and Armon, 2022]
and so most of our main results use XGBoost for modeling. Second, although ensemble methods currently have superior
performance, deep learning for tabular data is an area of active research, and a recent survey found that ResNet and
other deep learning models can achieve comparable or superior performance to XGBoost on benchmarking datasets,
although they generally take far longer to train [Gorishniy et al., 2021]. Third, we include L2-regularized linear methods
(linear regression and logistic regression) as a third model family because they are simple to understand and interpret,
are in common use across a wide variety of fields and applications, and have been found to achieve decent performance
in past work [Rudin, 2019, Clark and Provost, 2019].

3.4 Evaluation

We measure the R2 regression score between the actual numeric values and numerical predictions. R2 is normally
between 0 and 1. Our results include numerous modeling settings yielding negative R2 due to overfitting to the training
data. To ensure a fair comparison for such results, we truncated the reported R2 to 0. For the corresponding classifiers,
we measured the AUC (Area under the ROC Curve), which represents the ability of a classifier’s scores to rank positive
instances above negative ones [Provost and Fawcett, 2001] and is usually between 0.5 and 1. AUCs of less than 0.5 in
the validation or test data were truncated to 0.5.

A direct “apples-to-apples" comparison of regression and classification results is challenging for two reasons. First, the
two performance measures are on different scales and measure different things. Second, even among target variables of
the same type, performance is not necessarily comparable; some tasks are easier and some are harder. Therefore, we
normalize both R2 and AUC relative to the maximum value achieved in each random initialization of grid search. That
is, we compare progress from the minimum possible value to the maximum value as a function of the HPO budget. If
vmin is the minimum achievable value (0 for R2 and 0.5 for AUC), then define:

6We have experimented with much larger datasets in terms of both instance and feature set sizes and found very consistent results
but due to computational resource constraints we have excluded a full comparison from this paper.
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Figure 1: Cumulative maximum validation and test
performance by HPO budget for numeric and bina-
rized target variables, normalized relative to the maxi-
mum overall validation performance.

Figure 2: Average t∗ given various budgets, relative
to a budget of 400 iterations, also including maximum
performance across all random seeds.

vnormb =
vb − vmin

v∗B − vmin
(6)

tnormb =
tb − vmin

v∗B − vmin
(7)

Thus, vnormb starts somewhere between 0 and 1 with the default h value. As b increases to B, vnormb increases to 1.
We expect that tnorm(b, s) is less than vnorm(b, s), and shows the relative generalizability of each random search run
by comparing the test performance to the expected maximum (validation) performance.

4 RESULTS

The experiments in this paper illustrate key differences in how the model selection and training process plays out for
two types of predictive tasks: regression (predicting numerical targets) vs. classification (predicting their binarized
counterparts). In summary, this section shows that regression requires more time and data resources to reach optimal
performance, and is also more sensitive to various settings in the process.

Unless stated otherwise, most of the results in this section use feature set sizes of approximately 2000, a random
sampling algorithm for HPO, and XGBoost as the model family. Section 4.3 probes the effect of these three choices.

4.1 Hyperparameter Optimization

Using the formulas given in Equations 6 and 7, Figure 1 plots the normalized cumulative maximum validation and test
performance for each numeric target variable vs. its binarized counterpart across 400 HPO budgets. The lines show the
average performance across 30 target variables and 15 random initializations, and the shaded regions show the average
difference across target variables between the minimum and maximum initializations. The validation performance of
regression tasks (in blue) not only has relatively worse performance given default h, but also requires a higher budget to
approach v∗ . Table 2 summarizes the average number of trials required to reach 90, 95, and 100% of v∗ for each target
variable and random initialiation. The differences between numeric and binarized targets are all significant for α > .99.

Furthermore, the HPO process for regression is less generalizable. Note in Figure 1 that the test performance for
regression is lower than for classification, relative to what would be expected given the validation performance. After
400 search iterations, the average regression t∗ is 0.88. For classification, it is 0.96. A t-test for the difference between
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Table 2: Trials Required for Grid Search Convergence

% of Max Num Bin Diff Std Err p-val
90% 48.19 0.60 47.59 3.85 < .001
95% 86.92 6.41 80.51 4.92 < .001
99% 162.94 110.21 52.73 7.49 < .001

Table 3: Mean Difference vs. 400 Tuning Iterations

Iterations Num (std) Bin (std)
0 -39.12% (0.425) -0.56% (0.004)
10 -30.64% (0.333) -0.51% (0.003)
100 -5.33% (0.091) -0.19% (0.001)
Best Overall 13.91% (0.199) 0.58% (0.002)

these two means is significant for α = 0.99. The average gap between the minimum and maximum tnorm∗ is also
larger for regression, so the test performance has greater variation relative to the expected validation performance.
After 400 iterations, the average tnorm∗ range is 0.27 for regression and 0.04 for classification. Again, a t-test for the
difference in these two means is significant for α = 0.99. These results suggests that regression would benefit from
increased HPO budgets, i.e. more computational resources. Certainly, classification and regression should not use the
same sizes of grid.

These results are further emphasized in Figure 2, which compares the average t∗ given a budget of 400 iterations versus
various other budgets: the default HP, 10, and 100 iterations as well as the overall best h found across all random
initializations for each target variable. For many numeric variables, there is a substantial loss in performance for the
default h and other smaller budgets. Furthermore, even the average t∗ after 400 iterations is still far from the true
best possible performance across random searches, again emphasizing the tendency of regression to overfit. These
differences are not present for classification. Table 3 summarizes the average percent difference versus a budget of
400 iterations for numeric and binarized targets. All differences between numeric and binarized tasks are significant
for α = 0.99 based on paired t-tests. Not tuning, or using a smaller grid, affects classification significantly less than it
affects regression. Also, the best possible outcome is substantially larger for regression than the average, again calling
the replicability and generalizability of regression results into question.

4.2 Learning Curves

The results in this section used the process given by Perlich et al. [2003] to create learning curves that show generalization
performance with respect to the amount of training data for regression vs. classification. In order to experiment with
larger quantities of training data (up to 20, 000 training instances), we recombined DT , DV , and DTE , then randomly
selected 5, 000 test instances for each target. To create learning curves, we repeated the following steps 30 times.

1. Randomly draw k training instances, where k is between 100 and 20, 000.
2. Using the training set of size k, train an XGB model using a best h to predict the numeric target. Estimate

predictions in the test set and measure the R2.
3. Using the training set of size k, train an XGB model using a best h to predict the binarized target. Estimate

predictions in the test set and measure the AUC.
4. Normalize each R2 and AUC such that 0 is the minimum possible performance and 1 is the maximum

observed performance across all k for that target.

Figure 3 shows the normalized progress to the maximum performance averaged across 30 target variables and 30
random draws for each. The shaded regions represent a +/- 1 standard deviation interval around the average. This
chart provides evidence that the learning curves for regression are “steeper" with respect to the amount of training data.
That is, for any number of training data, classification tends to have relatively closer performance to the maximum
than regression. For instance, the average normalized performance for regression with a 100-instance training set is
4% of the maximum observed and 17% for classification. With a 1000-instance training set, regression is at 39% and
classification is at 59%.

We also expect that learning curves will level out as the marginal benefit of more data diminishes. At the high end of
training set sizes, the classification learning curves appear to be flattening, while the regression curves are apparently still
increasing. This implies that regression models receive relatively more benefit from more data; once again, classification
requires fewer resources to perform at the highest level.
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Figure 3: Average normalized learning curves for re-
gression vs. classification. On average, regression has
steeper learning curves, meaning that the performance
is more sensitive to training set size.

Figure 4: Validation and test performance across fea-
ture set sizes.

4.3 Other parts of the pipeline

There are other heuristic choices in the ML pipeline besides HPO budget. This section probes the effects of the size
of the feature set, the choice of sampling algorithm in the HPO grid search, and the choice of the model family for
regression vs. classification.

4.3.1 Feature set size

The models trained in the prior sections were trained using approximately 2000 features each. What happens if there are
fewer features? Figure 4 replicates Figure 1 with 5 and 100 features. With 5 features, the relative differences between
regression and classification are less dramatic, although still present. The differences are quite evident when there are
100 features. Anecdotally, we note that we have conducted preliminary experiments both on published benchmark
tabular datasets [Grinsztajn et al., 2022] as well as feature sets with up to 200, 000 features, and the results of these
preliminary experiments confirm the main results in this paper.

4.3.2 Grid Search Sampling Algorithm

Figure 5 compares the test performance across two grid search sampling algorithms: simple random sampling, and
Tree-Structured Parzen Estimator (TPE), a Bayesian sampler which has been found to yield improved results [Turner
et al., 2021]. As before, the difference between the two samplers are much smaller for classification than for regression.
We also note that for regression, the choice of which sampler performs better would depend on the HPO budget.

4.3.3 Model Selection

All of the prior results in this paper have used XGBoost as the model family; however, we find that model selection is
also more impactful for regression than for classification, as can be seen in Figure 6.7 This chart compares the average
best tuned test performance of Linear and ResNet models relative to XGBoost. The differences between the best and
worst-performing model families for classification are significantly less than those associated with regression. The
average percent improvement for regression tasks between the worst and best-performing model family is 245.79%.

7Note that due to resource constraints, these results include only 19 of the target variables examined in the prior sections.
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Figure 5: Relative performance of random sampling
vs. Tree Parzen Estimator.

Figure 6: Test performance of linear and ResNet mod-
els relative to XGBoost.

For classification, the average percent improvement is 6.34%. The paired differences are statistically significant for
α = 0.90.8

Taken along with the results in Section 4.3.2, the implication is that heuristic choices in all parts of the ML pipeline
matter relatively more for regression than for classification. The selection of models included in model selection are
more consequential. Model selection can be significantly shortcut for classification because the best model is closer in
performance to the worst and/or default model. With implications for replicability, the models chosen to benchmark
performance in research proposing a new algorithm for regression also take on increased importance. These results also
present an interesting tradeoff for researchers. Although regression requires more resources, there are also potentially
larger benefits to be found when developing new regression algorithms (for all parts of the ML pipeline).

5 DISCUSSION

Our results bring additional nuance to the current understanding of the importance of HPO in the machine learning
pipeline, particularly as it pertains to replicability of ML findings, sustainable AI, and automation of ML heuristics. HPO
is necessary to achieve optimal performance in ML models [Bischl et al., 2023], to the point where ML benchmarking
results can be reversed depending on the extent of HPO conducted [Bouthillier et al., 2021, Dodge et al., 2019]. This
has contributed to a lack of replicability in the ML literature and calls for increased detail in reporting of experimental
parameters [Dodge et al., 2019]. HPO budget, i.e. number of search iterations or total time, is also a framework that has
been used for evaluating the differences between induction algorithms; for instance, deep learning methods have been
found to achieve comparable performance to tree-based ensemble methods on tabular data, but deep learning methods
require far more computational resources [Gorishniy et al., 2021]. Our results leverage HPO budget as a dimension by
which to compare the relative resources required by regression and classifications and reveal the large discrepancy in
computational requirements between the two tasks. Our focus on HPO also highlights the fact that regression is more
sensitive to both heuristic choices and randomness. This both makes regression modeling findings around regression
harder to replicate and calls for larger grids (and even more computation) to be used in such contexts.

A major cost associated with HPO is the computation time that it requires, especially in the modern age of large language
models and neural architecture search (NAS) [Strubell et al., 2019]. A full grid search trains and evaluates models
using all possible hyperparameter combinations, although randomized grid search and its variations have been shown to
be just as effective but much faster [Bergstra and Bengio, 2012]. Still, given the criticality of conducting a thorough
grid search, HPO uses a tremendous amount of resources. These resource requirements leads to egregious quantities
of carbon emissions [Strubell et al., 2019, Schwartz et al., 2020] and also inequities in who is able to contribute to

8The core results for this paper have also been replicated for Linear and ResNet models and are included in the supplemental
material.
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the ML field [Strubell et al., 2019]. Our findings contribute to recent calls for more efficient ML algorithms [Strubell
et al., 2019, Schwartz et al., 2020, Dodge et al., 2019] by improving the efficiency of the ML pipeline rather than any
specific modeling algorithm: assuming that regression and classification are interchangeable from the perspective of
performance in a downstream application, we show that classification requires a smaller grid search and fewer resources
in general.

The other cost of HPO is one that is common to the entire ML pipeline. There are numerous heuristic choices involved,
such as which induction algorithms to try for comparison or optimization, which features to use, how much training
data to acquire, how to set the HPO budget, which hyperparameters to tune, the size of the grid, and more. These
choices are usually made by knowledgeable data scientists, who are in short supply [He et al., 2021]. AutoML attempts
to automate some of these choices, thereby streamlining the number of heuristic choices in the pipeline [He et al.,
2021]. For instance, recent work has focused on determining which hyperparameters for each common model family
are tunable (i.e. where HPO effort is best spent) [Probst et al., 2019]. This paper makes a fundamental contribution to
the AutoML literature by instead evaluating tunability based on an underlying characteristic of the data being modeled:
the formulation of the target variable. We find that regression tasks are overall more tunable, which has previously
observed but not systematically evaluated [Sipper, 2022].

This work makes the significant assumption that regression and classification can be used interchangeably in some
contexts and studies the effect of this choice on the resources required by the ML pipeline.9 Thus, it provides insight
into the choice of whether or not to binarize by conducting a systematic comparison. Although past work in statistics
has demonstrated that binarization leads to issues in traditional analyses, it frequently occurs in applied ML. We
demonstrate that regression tasks are particularly costly in terms of required modeling effort; they require a higher HPO
budget and greater amounts of training data, and the model selection process is less generalizable. Classification should
be chosen when possible for the sake of efficiency, and smaller grids can be used. On the other hand, regression may
present a greater opportunity for researchers who wish to publish impactful results; however, sufficiently large grid
search, ensembling, and repeated sampling should be used to ensure replicability.

There are a few other apparent limitations in this work. First, most of our results use XGBoost to demonstrate the
salient differences between the two tasks. We assert that using XGBoost may actually yield conservative results based
on preliminary experiments with ilnear models and ResNet deep learning models. Second, our datasets are relatively
small compared to the data typically used for truly computationally burdensome ML tasks. Once again, we believe that
the performance differences between regression and classification seen in our results may be conservatively estimated
compared to what would be seen with larger datasets, both in number of instances and number of features, based on the
results in Sections 4.2 and 4.3. Finally we also note that tabular datasets of medium size are quite common in business
applications. Future work could verify our findings with larger datasets and other model types.

6 CONCLUSION

We have experimentally compared the effect of choosing numeric regression vs. binary classification on the required
resources and resulting performance in the ML pipeline. We show that choosing a numeric target variable consistently
requires more time, computation, and data resources, and yields results that are more sensitive to randomness and model
selection. We present actionable recommendations for ML researchers, users, and consumers of models.
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